Adoption of SHM Systems to Address Families of Aircraft Integrity Checks

Dennis Roach
Tom Rice
FAA Airworthiness Assurance Center
Sandia National Labs

Ricardo Rulli
Fernando Dotta
Carlos Chaves
Embraer

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
Typical A-Scan Signals Used for Flaw Detection with Hand-Held Devices

- Eddy Current Signal at Crack Site
- Intermediate Echo Caused by Delamination
- Ultrasonic Pitch-Catch UT Signals Comparing Flawed and Unflawed Signatures

Corrosion Detection with Dual Frequency Eddy Current
Distributed Sensor Networks for Structural Health Monitoring

Smart Structures: include in-situ distributed sensors for real-time health monitoring; ensure integrity with minimal need for human intervention

- Remotely monitored sensors allow for Condition-Based Maintenance
- Automatically process data, assess structural condition & signal need for maintenance actions
- SHM for:
 - Flaw detection
 - Flaw location
 - Flaw characterization
 - Condition Based Maintenance
Disbond Detection & Growth Monitoring with Piezoelectric Sensors

After mold release flaw growth (50 KHz inspection)

Pull tab flaw
Drivers for Application of CVM Technology

• Overcome accessibility problems; sensors ducted to convenient access point
• Improve crack detection (easier & more often)
• Real-time information or more frequent, remote interrogation
• Initial focus – monitor known fatigue prone areas
• Long term possibilities – distributed systems; remotely monitored sensors allow for condition-based maintenance

Minimize distance from rivet head to produce smallest crack detection

CVM Sensor

Fatigue Cracks
Comparative Vacuum Monitoring System

- Sensors contain fine channels - vacuum is applied to embedded galleries
- Leakage path produces a measurable change in the vacuum level
- Doesn’t require electrical excitation or couplant/contact

![Diagram of CVM Sensor Adjacent to Crack Initiation Site]

![Graph showing pressure over time with crack detected and no crack]

Crack Detected (vacuum unachievable)

No Crack (vacuum achieved)
CVM Sensor Network Applied to 737 Wing Box Fittings

SHM Certification Program - 737NG Center Wing Box, Shear Fitting

- Cracking between 21K-36K cycles
- Visual/eddy current inspection for crack detection
- Mod requires fuel tank entry; inspection does not
737NG Center Wing Box – Accumulating Successful Flight History

Aircraft Parked at Gate After Final Flight of the Day

Access to SLS Connectors Through Forward Baggage Compartment

Connecting SLS Leads to PM-200 to Monitoring Sensor Network

AC3601 Sensor CVM Readings
Building Block to Approval for Routine Use of SHM

737 Non-Destructive Testing Manual

Document: D6-37239
Revision: 15Nov2015
Rev Level: 117

Search this document for:
Submit

Search Tips

Non-Destructive Testing Manual
Check boxes to add or remove from search. Check All | Uncheck All

- FRONT MATTER
- PART 01 - GENERAL
- PART 02 - X-RAY
- PART 04 - ULTRASONIC
- PART 05 - COMPARATIVE VACUUM MONITORING
- PART 06 - EDDY CURRENT
- PART 09 - THERMOGRAPHY
- PART 10 - VISUAL/OPTICAL

Changed to
PART 05 – STRUCTURAL HEALTH MONITORING
DO A DETAILED INSPECTION OR COMPARATIVE VACUUM MONITORING (CVM) INSPECTION OF THE CENTER WING BOX FRONT SPAR SHEAR FITTINGS FOR ANY CRACKS. IF ANY CRACK IS FOUND, REMOVE THE DAMAGED SHEAR FITTING, MAKE SURE THERE IS NO CRACKING IN THE UPPER PANEL AND INSTALL A NEW SHEAR FITTING AS GIVEN IN THIS SERVICE BULLETIN.

AT EACH SHEAR FITTING, IF NO CRACKING IS FOUND IT IS OPTIONAL TO ACCOMPLISH THE PREVENTIVE MODIFICATION BY REPLACING THE SHEAR FITTINGS.

This revision is sent to add a Comparative Vacuum Monitoring (CVM) inspection as an alternative inspection method for the front spar shear fitting. In addition, illustrations in figures are changed to show correct views, footnotes are added in fastener tables for clarification and footnotes in figures are changed to clarify sealing instructions.
(Goal: quantify the sensitivity, reliability and repeatability of crack detection using PZT and CVM sensors.

Approach:
- Design test configurations using representative structures & geometry on aircraft
- Evaluate sensor performance using Probability of Detection (POD) analyses

<table>
<thead>
<tr>
<th>Application Number</th>
<th>SHM Type</th>
<th>Description</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CVM</td>
<td>Fwd Fuselage PAX Door - Bracket</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>PZT</td>
<td>Fwd Fuselage PAX Door - Stringer</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>CVM</td>
<td>Central Fuselage II Side Fittings</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>PZT</td>
<td>Central Fuselage II Side Fittings</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>PZT</td>
<td>Center Fuselage End Fittings</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>CVM</td>
<td>Wing (Left/Right) FTE Upper Skin</td>
<td>3-4, 7</td>
</tr>
<tr>
<td>8</td>
<td>CVM</td>
<td>Wing (Left/Right) Main Box, Rib</td>
<td>6</td>
</tr>
<tr>
<td>8R</td>
<td>CVM</td>
<td>Wing (Left/Right) Main Box - Reinforced</td>
<td>6</td>
</tr>
</tbody>
</table>
Embraer Damage Detection Applications

Application 1 – CVM on Forward Fuselage PAX Door Bracket

Application 2 – PZT on Forward Fuselage PAX Door Stringer
Embraer Damage Detection Applications

Application 5 – CVM on Wing (Left/Right) FTE Upper Skin at Rib 4

Landing-gear bay

Rib 4

Rib 3
Embraer Damage Detection Applications

Application 15 – PZT on Center Fuselage (Left/Right) Side Fittings

Structure to be Monitored

PZT Sensors

Application 14 – PZT on Fuselage (Left/Right) Fastener Region Under Fairings

Smart Patch Design to Monitor All Needed Fasteners
Embraer Damage Detection Applications

Application 4 – PZT on Center Fuselage (Left/Right) End Fittings

PZT Sensors
Embraer Service Bulletins Supporting the Use of SHM Solutions

- **DATE: 07/May/2013**
 - **SB No.: 190-00-0027**
 - **EMBRAER**
 - **SERVICE BULLETIN**
 - **GENERAL - STRUCTURAL HEALTH MONITORING SYSTEM (BASED ON CVM TECHNOLOGY) INSTALLATION IN THE WING STRUCTURE**

- **DATE: 10/Jun/2013**
 - **SB No.: 190-00-0028**
 - **EMBRAER**
 - **SERVICE BULLETIN**
 - **GENERAL - STRUCTURAL HEALTH MONITORING SYSTEM (BASED ON CVM AND LW TECHNOLOGY) INSTALLATION IN THE FORWARD FUSELAGE STRUCTURE**

- **DATE: 27/Jun/2013**
 - **SB No.: 190-00-0029**
 - **EMBRAER**
 - **SERVICE BULLETIN**
 - **GENERAL - STRUCTURAL HEALTH MONITORING SYSTEM (BASED ON CVM AND LW TECHNOLOGY) INSTALLATION IN CENTRAL FUSELAGE II STRUCTURE**

Produce certification data package to allow SHM solutions on Embraer aircraft
Environmental Tests – Hot-Wet-Freeze

- Loading Specimen in Temperature-Humidity Chamber
- Loading Specimen into Freezer
Sensor readings during 40 day environmental tests remained small compared to threshold level required for crack detection:

- dCVM values ranged +/- 2.0; crack detection set for dCVM = 10.0
- Good durability of SHM system; no degradation
- Signal-to-noise (S/N) for crack detection is a minimum of 5 (most exceeded 20 in fatigue tests)
- Desired S/N for normal NDI operations is a minimum of 3

CVM Values During Environmental Test
Sensor Set 1 (Chain of CVM Sensors 1, 2, & 3)
Sensor Set 2 (Chain of CVM Sensors 4 & 5)
CVM and PZT Flight Test Program

SHM Sensor Installation & Monitoring on Azul Airlines Fleet & Embraer 190 Flight Test Aircraft

Embraer Application #1: CVM – Fwd Door Surround Brackets
Installation Summary

- Date of Installation: Nov/2014
- Service Bulletin: SB190-00-0029
- Zone: Central Fuselage II
- One sensor mesh per side
- 2 CVM sensors per mesh
CVM Flight Test Result – Aircraft PR-AYW

Consistent CVM Data Over Two Years of Flights (LHS of Aircraft)

PR-AYW -> LHS - Continuity

Continuity (flow) Much Above Lower Threshold

PR-AYW -> LHS - dCVM

dCVM (detection) Much Below Upper Threshold
Fuselage Components – CVM Performance Tests

Completion of Specimen Conformity Checks and Test Witness
CVM Validation – Data Analysis Using One-Sided Tolerance Intervals

- Crack detection based on PM-200 “Green Light” – “Red Light” results: data captured is the crack length at the time when CVM provided permanent (unloaded) detection
- Estimates the upper bound which should contain a certain percentage of all measurements in the population with a specified confidence
- Since it is based on a sample of the entire population (n data points), confidence is less than 100%. Thus, it includes two proportions:
 - Percent coverage (90%)
 - Degree of confidence (95%)
- Reliability analysis – cumulative distribution function provides maximum likelihood estimation (POD):

\[
\text{POD}_{95\% \text{ Confidence}} = \bar{X} + (K_{n, 0.95, \alpha})(S)
\]

- \(\bar{X} \) = Mean of detection lengths
- \(K \) = Probability factor (~ sample size, confidence level)
- \(S \) = Standard deviation of detection lengths
- \(n \) = Sample size
- \(\alpha \) = Detection level
- \(\gamma \) = Confidence level
SHM Information – Establishing Detection Thresholds to Minimize Interpretation or Data Analysis

- Automated data analysis is the objective – produce a “Green Light – Red Light” approach to damage detection
- Final assessment and interpretation by trained NDI personnel
- Ability to assign clear thresholds will effect methods to establish POD

\[A = \text{Sensor Response to Crack (flaw signal)} \]
\[B = \text{Sensor Response at Uncracked Region} \]

- PZT threshold value used for damage detection
- dCVM threshold value used for crack detection

\[.580'' \text{ Lift-off} \]
\[70\% \text{ FSH} \]
\[+14.5 \text{ dB} \]

\[.580'' \text{ Lift-off} \]
\[\text{Noise 1\% FSH} \]
Demonstrate sensors to detect representative rotorcraft structural damage – assess model for inclusion of structural health data into HUMS-based decision.
CVM Performance Testing – Mickey Mouse Nut Plate

Microscope Camera Records Crack Growth

Cracks viewed under load to track growth and show engagement with CVM galleries

Crack Length = 6.85 mm = 0.270 in
1dCVM = Gallery 1 = 4.2
2dCVM = Gallery 2 = 1.1
SIM2 = 16,250 Pa
Cycles = 20,278

Sample Data Recorded for Each Test Specimen
CVM Performance Testing Results – MM Plate

OSTI Probability of Detection Calculation

CVM Crack Detection Data

<table>
<thead>
<tr>
<th>Distance from Hole to Sensor Edge</th>
<th>Total Crack Length a (in)</th>
<th>Crack Length Under Sensor at CVM Detection a (in)</th>
<th>Log of Crack Length at CVM Detection a (In)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.268</td>
<td>0.138</td>
<td>-0.860120914</td>
</tr>
<tr>
<td>0.106</td>
<td>0.217</td>
<td>0.111</td>
<td>-0.954677021</td>
</tr>
<tr>
<td>0.119</td>
<td>0.299</td>
<td>0.180</td>
<td>-0.744727495</td>
</tr>
<tr>
<td>0.123</td>
<td>0.248</td>
<td>0.125</td>
<td>-0.903089987</td>
</tr>
<tr>
<td>0.113</td>
<td>0.248</td>
<td>0.135</td>
<td>-0.869666232</td>
</tr>
<tr>
<td>0.14</td>
<td>0.382</td>
<td>0.242</td>
<td>-0.616184634</td>
</tr>
<tr>
<td>0.096</td>
<td>0.374</td>
<td>0.278</td>
<td>-0.555955204</td>
</tr>
<tr>
<td>0.101</td>
<td>0.321</td>
<td>0.220</td>
<td>-0.657577319</td>
</tr>
<tr>
<td>0.124</td>
<td>0.270</td>
<td>0.146</td>
<td>-0.835647144</td>
</tr>
<tr>
<td>0.097</td>
<td>0.226</td>
<td>0.129</td>
<td>-0.88941029</td>
</tr>
<tr>
<td>0.106</td>
<td>0.287</td>
<td>0.181</td>
<td>-0.742321425</td>
</tr>
<tr>
<td>0.100</td>
<td>0.321</td>
<td>0.221</td>
<td>-0.655607726</td>
</tr>
<tr>
<td>0.110</td>
<td>0.279</td>
<td>0.169</td>
<td>-0.772113295</td>
</tr>
<tr>
<td>0.112</td>
<td>0.280</td>
<td>0.168</td>
<td>-0.774690718</td>
</tr>
<tr>
<td>0.095</td>
<td>0.409</td>
<td>0.314</td>
<td>-0.503070352</td>
</tr>
<tr>
<td>0.127</td>
<td>0.325</td>
<td>0.198</td>
<td>-0.70333481</td>
</tr>
<tr>
<td>0.114</td>
<td>0.333</td>
<td>0.219</td>
<td>-0.65955885</td>
</tr>
<tr>
<td>0.134</td>
<td>0.327</td>
<td>0.193</td>
<td>-0.714442691</td>
</tr>
<tr>
<td>0.081</td>
<td>0.258</td>
<td>0.177</td>
<td>-0.752026734</td>
</tr>
</tbody>
</table>

Statistic Estimates on Log Scale

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value (in.)</th>
<th>Value in Linear Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (X)</td>
<td>-0.745</td>
<td>0.187</td>
</tr>
<tr>
<td>Stnd Deviation (S)</td>
<td>0.121325291</td>
<td>0.05348766</td>
</tr>
</tbody>
</table>

POD Detection Levels

(\(\gamma = 95\%, \ n = 19 \))

| Flaw Size: POD = X + K(S) = | 0.310 |

Overall POD (with sensor offset) = 0.422”
POD Analysis Using Standard Hit-Miss Methodology (Mil-HDBK-1823)

- An efficient use of the binary (hit/miss) data is to produce an underlying mathematical relationship between POD and size.
- Logistic Regression **Hit/Miss POD model** is used to analyze binary (detect/no detect) data:
 \[
 \ln[POD(a)/(1 - POD(a))] = \alpha + \beta[\ln(a)]
 \]
 Where “a” is the flaw size and \(\alpha\) and \(\beta\) are estimated by maximum likelihood estimates.

- Assumption is for no variation in equipment or procedures.
- Assumption is all critical factors are controlled in the testing so no need for additional \(\varphi \cdot f\) to describe other factors on the RHS of log regression formula.
- Each flaw is either detected or not detected – best estimate for POD(a) is either 0 or 1; use a range of flaws to determine the \(\alpha\) and \(\beta\) that maximize the likelihood of the particular sequence of 0’s (misses) and 1’s (detects) that were observed.
Data Acquired for Hit-Miss and \(a\ vs. \hat{a}\) POD Analyses

dCVM values vs fatigue crack lengths were acquired throughout testing - mechanical trends analysis to assess complete hit-miss & \(a\ vs. \hat{a}\) profiles

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Eddy Current Crack Length at CVM (in)</th>
<th>Hit (1) or Miss (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVM-C2MMN-1-L</td>
<td>0.138</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-1-R</td>
<td>0.111</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-2-L</td>
<td>0.180</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-2-R</td>
<td>0.125</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-3-L</td>
<td>0.135</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-3-R</td>
<td>0.242</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-4-L</td>
<td>0.278</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-5-L</td>
<td>0.220</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-5-R</td>
<td>0.146</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-6-L</td>
<td>0.129</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-6-R</td>
<td>0.181</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.081</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.120</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.152</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.183</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.195</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.221</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.243</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.272</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.306</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.059</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Eddy Current Crack Length at CVM (in)</th>
<th>Hit (1) or Miss (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.103</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.130</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.134</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.169</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.181</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.189</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.217</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.244</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-R</td>
<td>0.276</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.112</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.136</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.164</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.168</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.207</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.242</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.262</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.157</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.179</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.210</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.222</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.246</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-7-L</td>
<td>0.275</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Eddy Current Crack Length at CVM (in)</th>
<th>Hit (1) or Miss (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVM-C2MMN-8-R</td>
<td>0.314</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.111</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.131</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.149</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.182</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.186</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.198</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.233</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.273</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-L</td>
<td>0.310</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.114</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.142</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.166</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.205</td>
<td>0</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.219</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.232</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.256</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.290</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-9-R</td>
<td>0.325</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-10-L</td>
<td>0.193</td>
<td>1</td>
</tr>
<tr>
<td>CVM-C2MMN-10-R</td>
<td>0.177</td>
<td>1</td>
</tr>
</tbody>
</table>

(65 data points)
POD Analysis Using Standard Hit-Miss Methodology – MM Nutplate

Sikorsky Rotorcraft CVM Crack Detection Performance - Mickey Mouse Nut Plate
Crack Lengths Under Sensor at CVM Detection - Hit/Miss POD Analysis

POD Maximum Likelihood Estimate
POD Uncertainty - 95% Confidence Bound

POD\[a_{(90/95)}\] = 0.286
Average Sensor Offset = 0.112
Overall POD = 0.343 + 0.122 = 0.398

65 Acquired Hit/Miss Data Points Plus Extrapolated Hit/Miss Data Points on Either Side to Produce a Complete POD Curve Using Extreme Crack Lengths (High and Low)
POD Analysis Using Standard a vs. \(\hat{a} \) Methodology (Mil-HDBK-1823)

- CVM system response data dCVM (\(\hat{a} \)) vs. crack length (\(a \)) was acquired during testing that included measurements before, during and after SHM crack detection.
- Convergence observed as additional data points were acquired by interpolating between the measured points in the dCVM vs Crack Length plots.
CVM Performance Testing Results – Comparison of OSTI, Hit-Miss, and a vs. \hat{a} Methodologies

MM Nutplate on S-92 Frame Gusset

CVM Performance for S-92 Gusset Cracks:

- POD $^{(90/95)} = 0.422$ OSTI Method
- POD $^{(90/95)} = 0.398$ Hit-Miss Method
- POD $^{(90/95)} = 0.412$ a vs \hat{a} Method
Conclusions on Use of SHM Approach

• Recent advances in health monitoring methods have produced viable SHM systems for on-board aircraft inspections

• CVM sensor detects cracks - diagnosis is fully automated & remote

• Sensors must be low-profile, easily mountable, durable, reliable & fail-safe

• Calibration for flaw identification (damage signatures) is key

• Reliability/POD assessments depends on sensor system, flaw type/orientation and application

• Ease of use allows for more frequent inspections – minimize repair costs

• SHM can decrease maintenance costs (NDI man-hours; disassembly) & allow for condition-based maintenance

• Application-oriented studies have led to approval for routine use & spawned larger, families of SHM applications

• AMOC for SBs and ADs or STCs – safety driven use is achieved in concert with OEMS & regulatory agencies; approval through regulatory framework established with Sandia-FAA-Delta-Boeing program

“SHM is the next level of NDT = it’s coming soon”
Adoption of SHM Systems to Address Families of Aircraft Integrity Checks

Dennis Roach
Tom Rice
FAA Airworthiness Assurance Center
Sandia National Labs

Ricardo Rulli
Fernando Dotta
Carlos Chaves
Embraer
Adoption of SHM Systems to Address Families of Aircraft Integrity Checks

Dennis Roach, Tom Rice
Sandia National Laboratories
FAA Airworthiness Assurance Center
Albuquerque, NM

Ricardo Rulli, Fernando Dotta, Carlos Chaves
Embraer
Sao Jose dos Campos
Brazil

Structural Health Monitoring (SHM) is the next adaptation of inspection technology. Reliable SHM systems can automatically process data, assess structural condition and signal the need for human intervention. The FAA has funded sensor development and SHM system validation programs over the years to produce quantitative assessments for sensitivity, durability, and repeatability. This has provided a database on SHM performance and laid the foundation for implementation of SHM solutions. Several aircraft manufacturers (OEMs) have embraced SHM with some even incorporating it into their NDT Manuals. This paper presents an OEM-Sandia Labs-regulator effort to move SHM into routine use for aircraft maintenance procedures. This program addressed formal SHM technology validation and certification issues so that the full spectrum of concerns, including design, deployment, performance and certification is appropriately considered. The Airworthiness Assurance NDI Validation Center (AANC) at Sandia Labs, in conjunction with Embraer, Azul Airlines, and Agencia Nacional de Aviação Civil (ANAC) completed a study to develop and carry out a certification process for SHM. By conducting assessments of families of aircraft applications, this effort focused on widespread implementation of SHM for many, similar structures. Validation tasks were designed to address the SHM equipment, the health monitoring task, the resolution required, the sensor interrogation procedures, the conditions under which the monitoring will occur, and the potential inspector population. An important element in developing SHM validation processes is a knowledge of the structural and maintenance characteristics that may impact the operational performance of an SHM system. In this study, statistical methods were applied to laboratory and flight test data to derive Probability of Detection (POD) values for SHM sensors in a fashion that agrees with current NDI requirements. This program is helping to establish an optimum OEM-airline-regulator process and determining how to safely adopt SHM solutions. Statistical methods applied to test data quantified sensor performance while close consultation with regulatory agencies was used to produce a process that is acceptable to both the aviation industry and ANAC. The activities conducted in this program demonstrated the feasibility of routine SHM usage and supported the development of regulatory guidelines and advisory materials to reliably and safely implement SHM systems. Formal SHM validation will allow the aviation industry to confidently make informed decisions about the proper utilization of SHM.